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A B S T R A C T   

Structure-based influential nodes identification is a long-term challenge in the study of complex networks. While 
global centrality-based approaches are generally considered to be more accurate and reliable, the requirements 
of complete network information and high computational complexity are hard to meet, limiting their applica
tions in many practical scenarios. In addition, recent studies have highlighted the effect of cyclic structures 
introducing redundant paths in network connectivity and exaggerating the importance of traditional centrality 
measures. In this work, we develop a new centrality metric, called Multi-Spanning Tree-based Degree Centrality 
(MSTDC), to quantify node importance with linear complexity by leveraging redundant ties. MSTDC is calculated 
using the aggregation of degrees of a small number of spanning trees constructed with a few randomly selected 
root nodes. Experiments on synthetic and empirical networks reveal that MSTDC obtains superior performance 
than other benchmark network centralities in identifying influential nodes from the perspective of both main
taining network connectivity and maximizing spreading capacity. In addition, we find that MSTDC is extraor
dinarily effective in networks with high clustering coefficients. Our study provides novel insights into the role of 
redundant ties in network structural and functional analyses.   

1. Introduction 

The study of identifying influential nodes has attracted extensive 
attention from various scientific communities [1–7]. As one of the most 
significant topics in complex networks, identifying influential nodes has 
prominent practical applications such as suppressing epidemic 
spreading [8,9], stopping rumor propagation [10,11], promoting prod
uct adoption [12] and improving the robustness of route networks and 
power networks against malicious attacks [13,14]. 

Influential nodes are generally located in topological positions of 
great significance in a network [15–18]. Most existing studies con
cerning structure-based influential nodes identification can be classified 
as using either local information-based or global information-based 
methods. A variety of methods based on network topology have been 
proposed to identify influential nodes according to the nodes’ positions, 
such as degree centrality [19], second order degree centrality [20], 
k-core [21], etc. Degree centrality, characterized as the number of direct 

neighbors of a node, is the most representative and widely used indi
cator. However, in some scenarios, it cannot effectively identify influ
ential nodes. For instance, when a node has few direct neighbors, 
whereas the neighbors are opinion leaders, its influence may be more 
important than a node with abundant immediate neighbors. To solve 
this problem, [24] developed a centrality index to measure the impor
tance of nodes by considering neighbors of second-order, i.e., the 
neighbors of neighbors. Furthermore, Kitsak et al. proposed the 
well-known k-shell decomposition method to split networks to search 
for core nodes, but this method performs poorly in some situations. For 
example, in a propagation tree [25,26], all nodes are in the same core 
and are regarded as equally important. However, some researchers have 
argued that the tree structure may be hierarchical, and the nodes closer 
to the root are more important [27]. Recently, local indices such as DWT 
and DSHC [22,23], which consider the connection between nodes and 
their neighbors, have been developed. While they presented satisfactory 
performances compared to traditional local metrics, they could not 
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outpace global metrics with fast computing velocities. 
Global metrics such as betweenness centrality [28], eigenvector 

centrality [29,30], and gravity models [31] have been proposed to 
combine several global or local centralities. Although these approaches 
are usually capable of identifying influential nodes with improved ac
curacy, they require complete network information and have high 
computational complexity, limiting their applications in many practical 
scenarios. 

In recent years, the roles of clustering and redundancy concerning 
the identification of influential nodes in networks have attracted 
increasing attention. Generally, there is an enormous amount of inter
play between nodes in a large-scale network. A node can contact other 
nodes directly or indirectly, (through several steps) and there may be 
substantial cyclic structures providing redundant paths to the involved 
node pairs. It has been validated that nodes with high clustering co
efficients are generally not critical, while weak ties play a vital role in 
the propagation process [32–36]. Liu has confirmed that redundant ties 
could form locally densely connected core-like group, which may distort 
influential nodes identification result by traditional metrics [37]. 
Recently, Lü et al. have called for in-depth studies of cyclic structures, e. 
g., triangles and cycles, and their roles in network topology and dy
namics [38]. In addition, Fan has proposed the Cycle Ratio enclosing the 
information of redundant ties from the perspective of cycles and 
confirmed that redundant ties strongly influence node importance [39]. 
Nevertheless, methods of considering redundant ties through cycles 
often come with high computational complexity. The structures formed 
by redundant ties are more complicated in reality and should be 
measured from multiple perspectives. There is still a prodigious gap in 
the research for comprehensively and effectively considering redundant 
ties in influential nodes detection. 

To overcome these limitations, we propose a new centrality called 
Multi-Spanning Tree-based Degree Centrality (MSTDC), calculated by 
aggregating the degrees of a small number of spanning trees constructed 
with a few randomly selected root nodes. It considers neighbors’ effects 
on nodes and interactions by incorporating local and global information. 
Furthermore, the proposed approach can quantify nodes’ global 
importance by leveraging redundant ties’ side effects. Experiments on 
synthetic and empirical networks reveal that MSTDC obtains superior 
performance compared to other benchmark network indices in terms of 
maintaining network connectivity and maximizing spreading capacity, 
especially in networks with high clustering coefficients. The rest of the 

paper is organized as follows: In Section 2, we implement the theoretical 
analysis and compute the complexity of our method. In Section 3, we 
describe the synthetic networks and empirical networks data as well as 
the evaluation metrics used in the study. In Section 4, we compare our 
method with some representative methods in different synthetic and 
real-world networks. Finally, in Section 5, we summarize the contribu
tions of this study and discuss future work. 

2. Methodology 

2.1. Motivation 

In this work, we develop an approach to eliminate the side effects of 
redundant ties and propose a metric to effectively identify influential 
nodes in networks. To illustrate the motivation of our approach, 
assuming that a virus starts from an arbitrary node in Fig. 1(a), it will 
transmit the virus to its neighbors in the next step. The critical step to 
suppress the spreading is to immunize or disintegrate the network 
through a set of key nodes. If we take measures based on network 
metrics, we find that the largest degree nodes are a1 and b2, the highest 
betweenness centrality nodes are b2, while the highest k-core nodes are 
b2, b3, b4, b5, b6, and a1, respectively. We soon discover that any of these 
metrics cannot account for the fundamental importance of virus 
spreading, given any node being infected: the virus will spread further 
through c1, because it has more outward-extending nodes [25]. 

Given any node except c1 being immunized, the virus can still spread 
globally no matter which node is infected, with an average infection size 
of 9 nodes. Supposing c1 is vaccinated, the virus cannot spread further if 
it starts from d1 or d2. In any case, the virus spreads locally with an 
average infection size of 7 nodes when it starts from an arbitrary node 
other than c1, d1, and d2. The expected infection size is approximately 
5.67 nodes in the case of immunizing c1. Consequently, it is most effi
cient to immunize c1 to suppress virus diffusion in this network, 
although c1 is not the most influential node according to traditional 
network indices. The difficulty in characterizing node importance based 
on degree, betweenness, or k-core in this example can be attributed to 
the triangles and loops, which provide multiple paths to all involved 
node pairs and form a special structure called local coupling, a ubiqui
tous network structure, where nodes are tightly connected. On the one 
hand, the nodes in local coupling will form core-like [40] cliques, and 
they always stay in the same core, resulting in numerous pseudo-core 

Fig. 1. Difference between the initial network and the spanning tree. (a) the initial network. (b) a spanning tree generated with the single root node b4 according to 
BFS algorithm. 
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nodes [25]. On the other hand, local coupling provides redundant paths 
to all involved nodes. For instance, if two nodes belong to a cycle, then 
there are at least two independent paths connecting them, which causes 
redundant ties. Consequently, the effects of redundant ties should be 
considered when measuring node importance. 

2.2. Multi-spanning tree-based degree centrality 

Based on the aforementioned discussions, we propose the construc
tion of spanning trees [41] to reduce the effect of redundant ties and 
develop a new method, called MSTDC, to identify influential nodes. Let 
G = (V,E) be a network with N = |V| nodes and M = |E| edges. In an 
undirected and unweighted network, a spanning tree is a connected 
subgraph of G with N nodes, N − 1 edges, and no loops. According to 
these characteristics, there is only one path between any two nodes. In 
this work, we adopt breadth-first-search (BFS) algorithm [42] to 
construct spanning trees. In Fig. 1(b), we show the BFS spanning tree of 
the toy network, started from node b4. Compared to Fig. 1(a), there are 
no cycles in Fig. 1(b) and the redundant ties and local coupling are 
appropriately eliminated. Then we propose the primary index referred 
to Spanning Tree-based degree centrality (STDC), represented by: 

STDC(i) =
∑

j∈τ(i)
aij

(i) (1)  

where τi represents the neighbors of node i in the spanning tree started 
from node i, aij

(i) = 1 if there is an edge between i and j in the spanning 
tree, and otherwise, aij

(i) = 0. 
It is worth noting that the branching process (i.e., determining which 

node is connected next) of the spanning tree and the selection of the root 
node could cause statistical fluctuations of STDC. In this work, we adopt 
equal probability as the branching rule to construct spanning trees. Each 
child node has the same probability of being connected first. Therefore, 
by aggregating the results of multiple experiments, the statistical fluc
tuations will be appropriately eliminated. 

As the spanning trees may change substantially when the starting 
node is different, we randomly select a number of nodes as root nodes to 
construct multiple spanning trees and aggregate their topology infor
mation to eliminate the statistical fluctuations (Fig. 2). So, we propose a 
modified index called Multi-Spanning Tree-based degree centrality 
(MSTDC), calculated by: 

Fig. 2. Illustration of MSTDC calculation. (a) the initial network. (b)-(k) ten spanning trees generated with different root nodes.  
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MSTDC(i) =

∑

k∈σ

∑

j∈τ(i)
a(k)

ij

T
(2)  

where k represents the root node of one spanning tree, σ represents the 
randomly chosen node-set, and T represents the number of nodes in σ, i. 
e., the number of spanning trees. 

As shown in Fig. 2, from the perspective of betweenness centrality, a 
node with high betweenness centrality also owns relatively high 

MSTDC, as does the degree. Nevertheless, we cannot see this phenom
enon in terms of k-core. This means our method could reflect the char
acteristics of degree and betweenness centrality. b2, along with the 
highest betweenness centrality, has a higher MSTDC value than a1, 
although their degrees are equivalent and the best, which implies that 
our method incorporates more information of betweenness centrality. 
The highest MSTDC node is c1, with a relatively high degree and 
betweenness centrality and it owns more outward-extending nodes than 
others, captured by our method. 

The detailed procedure of MSTDC calculation is described in Algo
rithm 1. As the time complexity of BFS is O(N + M), the complexity of 
MSTDC is O(T(N +M)). According to the results in Section 4.1, the value 

of T can be ignored in terms of network size. Consequently, the 
computational complexity of our method is O(N + M), much lower than 
that of massive amounts of global network indices and much lower than 
indices considering the redundant ties through cycles, e.g., Cycle Ratio. 
For example, the complexity of betweenness centrality and closeness 
centrality is O(MN3) and O(MN2), respectively [24]. 

Algorithm 1. MSTDC Calculation. 

3. Experimental setting 

We evaluate the performance of MSTDC to identify influential nodes 
under two well-studied dynamical process, network disintegration 
[43–45] and epidemic spreading [46], whereby the importance of a 
node is measured according its criticality in maintaining the network 
connectivity or the outbreak size, respectively. 

3.1. Data description 

Synthetic networks. In order to explore the effects of redundancy on 
influential nodes identification, we use Watt-Strogatz (WS) model to 
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generate various synthetic networks with varying clustering coefficients 
and average degrees. In the WS model, the network starts with a ring and 
each node is joined with k nearest neighbors. Then each edge (u, v)is 
rewired as (u, w)with probability p, where w is randomly chosen. By 
tuning p, the constructed networks are transiting between extremely 
regular (p = 0)and random (p = 1). The average clustering coefficient 
(C) changes with p, where C ≈ 3/4 for p = 0 and C ≈ k/N for p = 1, 
respectively [47], i.e., a small p indicates a high clustering coefficient in 
WS networks. For the networks generated in this study, C ranges from 
0.07 to 0.58 (see Table S1 for details). 

Empirical networks. We use six empirical networks to validate the 
performance of MSTDC, including the collaboration network of general 
relativity and quantum cosmology from the e-print arXiv (CA-Grqc) 
[48], the collaboration network of high energy physics-phenomenology 
from the e-print arXiv (CA-Hepph) [49], the social network of bottlenose 
dolphins, observed between 1994 and 2001 (Dolphin) [50,51], the yeast 
protein-protein binding network generated by tandem affinity purifi
cation experiments (Parsed Tap) [52], the peer-to-peer file-sharing 
network of Gnutella [53], and the power grid network of the Western 
States of the United States of America (Powergrid) [54]. All networks 
mentioned above are considered to be undirected and unweighted, and 
only the giant connected components are extracted. Their basic topo
logical features are summarized in Table 1. 

3.2. Robustness measure 

Network disintegration involves identifying the critical nodes or 
edges whose removal will lead to a network collapse. Given a fully 

connected network, if a number of nodes and their attached edges are 
removed, the network may be divided into many components, and the 
nodes in the giant connected component may decrease dramatically. We 
compute the ranking lists of nodes based on different indices, and the 
node with the largest index value is removed preferentially. As relevant 
research supports that dismantling 5–10 % of influential nodes is suffi
cient to meet most practical needs [56,57], we adopt the proportion of 
nodes in the giant connected component (s) after removing the 
Top-0.1 N nodes to reflect the capability of fast disintegration under a 
certain strategy. Besides, we use the area under the robustness curve R to 
capture the network’s response when it suffers from attacks, which is 
defined as [55]: 

R =
1
N

∑N

Q=1
s(Q) (3)  

Where s(Q) is the proportion of nodes in the giant connected component 
after removing Q nodes. 

3.3. Spreading capability 

The spreading capability of nodes is widely used to evaluate the 
nodes’ importance because the probability of accepting information or 
being infected relies on the source’s influence [58]. We employ the 
standard susceptible- infected-recovered (SIR) model to simulate 
spreading dynamics. In the SIR model, each node belongs to either 
susceptible, infected, or recovered state. At each timestamp, an infected 
node will infect its neighbors with probability β and each infected node 
will transfer to recovered state with probability γ. For the sake of 
simplicity, γ is set as 1. As for β, we calculate the epidemic threshold of 
each network according to the mean-field approach (see Table 1 for 
details) and adjust the specific infection rate in the simulation to avoid 
the interference of inappropriate propagation probability. The spreading 
capability is quantified by the number of cumulative infected and 
recovered nodes denoted by F. The spreading process is terminated at 
step 100 or until no additional nodes can be infected. 

4. Results 

4.1. Comparison of STDC and MSTDC 

In this section, we use empirical networks to explore the effects of the 
number of randomly sampled spanning trees, T, for the stability of 
MSTDC through network disintegration. In each experiment, we remove 
nodes and their attached edges in descending order according to a 
specific centrality, and then calculate R to measure the importance of 
nodes in maintaining network connectivity. When T = 1, MSTDC de
generates to STDC. 

To compare the results on different networks, we analyze the relative 
performance gain of network disintegration (R̂) as a function of T, i.e., 
the number of spanning trees used to calculate MSTDC. R̂ is calculated 
as the ratio of R for when T ≥ 1 and for when T = 1: 

Table 1 
Basic statistics of empirical networks. k, l, and C denote the average degree, the average shortest path lengths, and the average clustering coefficients of the network, 

respectively. β∗ = k/k2 is the epidemic threshold of a network and k2 is the second-order average degree. (These parameters correspond to the giant connected 
component of the original network.).  

Networks N M Diameter k l C β∗

CA-Grqc 4,158 26,580 17 12.915 6.049 0.557 0.056 
CA-Hepph 11,204 117,649 13 20.996 4.673 0.62 0.008 
Dolphin 62 159 6 5.129 3.111 0.248 0.147 
Parsed Tap 1,373 6,833 12 9.953 5.224 0.529 0.061 
Gnutella 62,561 147,878 11 4.728 5.936 0.005 0.086 
Powergrid 4,941 6,594 46 2.67 18.99 0.10 0.258  

Fig. 3. The performance of MSTDC for network disintegration concerning R̂ 
when Tincreases. All results are averaged over 100 simulations. 
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R̂ =
RMSTDC

RSTDC
(4) 

As shown in Fig. 3, R̂ changes rapidly when T increases from 1 to 10, 
and it becomes stable for T ≥ 15 in most networks except Powergrid. 
The performance improvement of MSTDC in the tested networks ranges 
from 2 % to 40 %, respectively. Apparently, a small number of spanning 
trees used in MSTDC are capable of measuring the importance of nodes 
in maintaining network connectivity. Thus, the vital information missed 
by STDC can be integrated by MSTDC. For the remaining tests, we set T 
= 30 for the calculation of MSTDC to ensure that the results across 
different networks are comparable. 

4.2. Network disintegration 

In this section, we examine the performance of MSTDC in identifying 
influential nodes through network disintegration, by comparing it 
against a number of state-of-the-art methods: (1) degree centrality, (2) 
betweenness centrality (Bet), (3) eigenvector centrality (Eig), (4) k-core, 

(5) closeness centrality (Clo), (6) local clustering coefficients (Clu), (7) 
PageRank [59], (8) degree based on information entropy (Information 
Entropy) [60], and (9) Cycle Ratio. 

4.2.1. Synthetic networks 
For the synthetic networks, we first investigate the effects of network 

average degree k and clustering coefficient tunable parameter p on R. 
We generate 100 networks for each parameter setting in Table S1, and 
report the average values in Fig. 4. The results show that, when the 
average degree is fixed, R increase with p, i.e., higher average clustering 
coefficient implies lower R. For instance, when k = 4, R increases from 
0.14 to 0.28 and promotion rate varies from 31 % to 14 % as p increases 
from 0.05 to 0.5. R shows a strong correlation with k and their marginal 
benefits are asymptotically declined. For instance, when p = 0.05 and 
N = 500, R increases from 0.14 to 0.35 and the promotion rate ranges 
from 65 % to 15 %. 

The performance of all disintegration methods on the WS networks 
are summarized and compared in Table S2. It is obvious that MSTDC 
generally outpaces other methods in most networks with a few 

Fig. 5. Promotion rate φ for WS networks disintegration with MSTDC. (a) the network size is 500; (b) the network size 1000. All results are averaged over 100 
simulations. 

Fig. 4. R for WS networks disintegration with MSTDC. (a) N = 500; (b) N = 1000. All results are averaged over 100 simulations.  
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exceptions for p = 0.4 and p = 0.5, where MSTDC is relatively inferior to 
the optimal with average discrepancies of about 2 %. For each k, the 
maximum discrepancy between MSTDC and the suboptimal is 13 %, for 
when p = 0.05. It implies that MSTDC is dramatically effective in high 
clustering networks compared to the state-of-art measures and the per
formance is also affected by the average degree. 

To illustrate the superior performance of MSDTC, we select two 
classic centrality measures, i.e., degree and betweenness, for further 
comparison. The performance differences are measured through pro
motion rate φ (Eq. (5)), where the object of comparison is the optimal 
value of degree and betweenness centrality As shown in Fig. 5, for both 
N = 500 and N = 1000, φ increases constantly with p, i.e., MSDTC is 
more powerful for networks with higher redundancies. For each k, φ 
reaches its maximum value (29 %) at p = 0.05, whereas the minimum is 
6 %. Moreover, we find that when p is given, the promotion rate exhibits 
a strong correlation with k and their marginal benefits are asymptoti
cally declined. For instance, when p = 0.05 and N = 1000, φ varies from 
29 % to 5 % and the discrepancies between adjacent k varies from 16 % 
to 2.5 %. 

φ =
(RMSTDC − Roptimal

Degree and Betweenness)

Roptimal
Degree and Betweenness

× 100% (5)  

4.2.2. Empirical networks 
The R value of disintegration methods on the six empirical networks 

are presented in Table 2. It is clear that MSTDC shows better perfor
mance over other methods among all the benchmarks. Specifically, for 
networks with high clustering coefficients, i.e., the CA-Grqc, CA-Hephh 
and Parsed Tap networks, the promotion rates between MSTDC and the 
sub-optimal are fairly low (1.1 %, 2.42 %, and 3.69 % respectively). For 
networks with lower clustering coefficients, i.e., the Dolphin, Gnutella 
and Powergrid networks, the promotion rates between MSTDC and the 
sub-optimal are 4.38 %, 5 % and 9.68 %, respectively. These distinct 
differences can be explained by the joint effect of network density, for 
which the CA-Grqc, CA-Hepph and Parsed Tap have much larger average 
degree than the Dolphin, Gnutella and Powergrid. The maximum pro
motion rate reaches in Powergrid with the lowest average degree. 
Moreover, the result of Cycle Ratio exceeds that of degree in CA-Grqc, 
CA-Hepph and Parsed Tap, verifying that redundancy negatively im
pacts traditional centralities. It is worth noting that MSTDC outperforms 

Table 2 
Results of R on empirical networks.  

Networks Information Entropy Cycle Ratio PageRank Eig Clo K-core Clu Degree Bet MSTDC 

CA-Grqc 0.142 0.104 0.092 0.288 0.168 0.232 0.461 0.134 0.093 0.090 
CA-Hepph 0.249 0.168 0.178 0.342 0.285 0.284 0.475 0.231 0.165 0.161 
Dolphin 0.295 0.295 0.274 0.367 0.353 0.327 0.411 0.278 0.284 0.262 
Parsed Tap 0.347 0.283 0.272 0.397 0.309 0.413 0.472 0.336 0.217 0.209 
Gnutella 0.136 0.146 0.120 0.180 0.166 0.174 0.424 0.133 0.139 0.114 
Powergrid 0.062 0.082 0.065 0.328 0.200 0.286 0.302 0.067 0.070 0.056  

Fig. 6. The proportion of nodes in the giant connected component (s) when a proportion of nodes (ρ) is removed. (a) CA-Grqc; (b) CA-Hepph; (c) Dolphin; (d) Parsed 
Tap; (e) Gnutella; (f) Powergrid. 
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the well-known method, PageRank. In CA-Hepph and Parsed Tap, the 
promotion rates are 10 % and 23 % respectively. 

In addition, we investigate the dynamic process of network collapse 
by examining the curve of s after removing Top-0.1 N nodes. From the 
results presented in Fig. 6, we can see that MSTDC generally outpaces 
the other indices. Specifically, MSTDC achieves the best performance in 
CA-Grqc, with a 70 % reduction in GCC size after removing Top-0.1 N 
nodes. The performance of the local clustering coefficient is proven to be 
the worst in all tested networks. Specifically, removing Top − ρN nodes 
gives rise to the change of s less than the change of ρ, except in Gnutella. 
In Gnutella, with the average clustering coefficient of 0.005, removing 
the Top-0.1 N nodes according to the local clustering coefficients causes 
a change of approximately 20 % in s. This suggests that local clustering 
coefficients achieves better performance in sparse networks. These re
sults confirm the theoretical analysis in Section 2.1 that clustering and 
local coupling negatively interfere with the identification of influential 
nodes. 

Betweenness centrality or PageRank is the sub-optimal method. In 
high clustering coefficients networks, e.g., CA-Grqc, CA-Hepph, and 
Parsed Tap, betweenness centrality outpaces PageRank. In Dolphin and 
Gnutella, with relatively low clustering coefficients, PageRank exhibit 
better performance compared to betweenness centrality. Noticeably, the 
increment of MSTDC compared with the sub-optimal method among 
benchmarks is consistent with the result of R in empirical networks. 

Combining the results of R and s in empirical networks, we can see 
that disintegrate networks with higher MSTDC is more effective, espe
cially for networks with high clustering coefficients and low average 
degree. 

4.3. Epidemic spreading 

In this section, we measure the importance of nodes through 
spreading dynamics. The discrepancies among the spreading capabilities 
of different indices are fairly small when β is small and gradually grows 
larger with the increment of β. 

As shown in Fig. 7, MSTDC is superior to the other indices among all 
empirical networks under different transmission probabilities. On 
average, the spreading with high MSTDC nodes can generate 6 % more 
widespread diffusion compared to the suboptimal. Specifically, in CA- 
Hepph, MSTDC causes the most widespread outbreak with 65 % of 
nodes infected when β = 0.2. It is also noteworthy that the curves of the 
other centralities except MSTDC become gradually coincident in CA- 
Hepph, Dolphin and Gnutella as β increases. Moreover, Cycle Ratio 
and betweenness centrality are the sub-optimal methods in CA-Grqc, 
and CA-Hepph. Cycle Ratio is relatively inferior to betweenness cen
trality in Parsed Tap. In sparse networks, i.e., Gnutella and Powergrid, 
PageRank is the sub-optimal method. Meanwhile, the discrepancies 
between betweenness centrality and degree centrality is relatively small. 

In summary, combined with the comparison of network disintegra
tion and epidemic spreading, MSTDC outperforms the other benchmark 
network indices in identifying influential nodes for maintaining network 
connectivity and maximizing spreading capacity and is extraordinarily 
effective in networks with high average clustering coefficients. 

4.4. Correlation analysis 

To further explore the relationship between MSTDC and other 
network indices, we measure the correlation between pairs of indices 
through Kendall’s Tau (τ) [61]. From Fig. 8, we can see that the corre
lation between MSTDC and PageRank, degree and betweenness cen
trality are higher than that for the other indices (the average correlation 
coefficients are 0.65, 0.61 and 0.78 respectively). These attributes that 
spanning trees incorporate the global information of paths among nodes 
and the calculation of degree in a spanning tree integrates the local in
formation. The correlations between MSTDC and the others are higher in 
networks with relatively low average clustering coefficients, but lower 
in high clustering networks. This explains why MSTDC is extraordinarily 
effective in networks with high average clustering coefficients. As sug
gested by the lower correlations, the node rankings produced by MSTDC 
contain more information than those produced by other indices in 

Fig. 7. Comparisons of the propagation capability of nine methods under different propagation probabilities. Each experiment is obtained by averaging over 100 
independent runs. (a) CA-Grqc; (b) CA-Hepph; (c) Dolphin; (d) Parsed Tap; (e) Gnutella; (f) Powergrid. 
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networks with high average clustering coefficients. 
MSTDC eliminates the redundant ties and local coupling by aggre

gating the information of multiple spanning trees. There are no triangles 
in spanning trees, so MSTDC is substantially different from local clus
tering coefficients. As exhibited in Fig. 8, the correlations between 
MSTDC and local clustering coefficients is negative in high clustering 
networks with τ = − 0.13 . This suggests that our method differs signif
icantly from local clustering coefficients. Moreover, the correlations 
between MSTDC and Cycle Ratio are higher in low clustering networks 
and lower in high clustering networks. It indicates that MSTDC could 
reflect the effects of redundancy from another perspective. 

5. Conclusion and discussion 

In this work, we define a new node ranking method, called MSTDC, 
which can quantify the importance of an individual node by eliminating 
redundant ties and local coupling by aggregating the information of 
multiple spanning trees. Experiments on six empirical networks show 
that MSTDC obtains superior performance than the other indices in 
identifying influential nodes with regard to maintaining network con
nectivity and blocking network spreading. These attributes that span
ning trees incorporate the global information of paths among nodes, and 
the calculation of degree in a spanning tree considers the local infor
mation. Furthermore, we have proven that our method is more suitable 
for networks with higher average clustering coefficients. While few 
studies have paid attention to the role of redundant ties in topology, the 
present study could extend our understanding of redundant ties and how 
they affect the identification of influential nodes. This study provides 
novel insights for considering the role of redundant ties by constructing 
spanning trees. 

In this paper, we eliminate redundant ties by constructing spanning 
trees, which turns the network into a set of tree ensembles. As most 
empirical networks are rather complicated, eliminating all redundant 
ties may cause the loss of vital information, and the definition of 
redundancy can be different in practical scenarios. Future work is 
required to develop an appropriate index to quantify the degree of 
redundancy for edges. Future research should evaluate methodologies to 

set a threshold for redundancy dismantling for a more general frame
work of influential node identification. Furthermore, as the community 
structure is also one of the main properties for real-world networks [62, 
63], the interacting effect of link redundancy, community structure and 
performance of MSTDC is yet to be explored. 
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